

International Journal *of* Integrated Sciences & Technology (JIST) http://www.cuet.ac.bd/IJIST/index.html

International Journal of Integrated Sciences & Technology 2 (2016) 7-13

First-principles Studies of the Structural, Elastic, Electronic and Optical Properties of Ti₂CdC and Ti₂CdN

M. Roknuzzaman²*, M. A. Hadi² and M. J. Abden²

¹Department of Physics, Jessore University of Science and Technology, Jessore 7408, Bangladesh
 ²Department of Physics, Rajshahi University, Rajshahi 6205, Bangladesh
 ³Department of EEE, International Islamic University Chittagong, Chittagong 4203, Bangladesh

Abstract

First-principles studies were conducted to investigate the structural, elastic, electronic and optical properties of the Cdcontaining only synthesized MAX phase Ti_2CdC in comparison with the predicted phase Ti_2CdN . Our calculations show that the substitution of C by N in Ti_2CdC mostly affects the lattice constant *c* but the lattice constant *a* almost remains unchanged. All elastic constants and moduli increase when C is replaced by N. In comparison with the Ti_2CdN phase, Ti_2CdC is more compressible along the c-axis. The elastic anisotropy in Ti_2CdC is high in comparison with Ti_2CdN . Both nanolaminates are brittle in nature. The calculated electronic band structures and density of states imply that the chemical bonding in two compounds is a combination of covalent, ionic and metallic nature. Ti_2CdC is more conducting than Ti_2CdN . The obtained reflectivity spectra show that the MAX phases Ti_2CdC and Ti_2CdN have the potential to be used as coating materials for reducing solar heating.

Keywords: First principles, elastic properties, electronic properties, optical properties.

1. Introduction

The MAX phases, a class of layered ternary carbides and nitrides, are described by the chemical formula M_{n+1}AX_n, with the different MAX stoichiometries often referred to as 211, 312, and 413 phases for n =1, 2, and 3, respectively. In the periodic table of elements, M is an early transition metal from groups 3 (Sc), 4 (Ti, Zr, Hf), 5 (V, Nb, Ta), or 6 (Cr, Mo), A is an A-group element from groups 12 (Cd), 13 (Al, Ga, In, Tl), 14 (Si, Ge, Sn, Pb), 15 (P, As), or 16 (S), and X is C and/or N. The MAX phases are thermodynamically stable nanolaminates which have the potential for industrial applications owing to their conspicuous combination of physical, chemical, electrical, and mechanical properties, some of which are characteristics of metals and ceramics [1]. Due to their simultaneous metallic and ceramics characteristics, the MAX phases are also termed as metallic ceramics [2]. These technologically important ceramics have drawn sufficient attention of material scientists, physicists, and chemists because of their good electrical and thermal conductivities, exceptional

Corresponding author:

E-mail : rokonphy@yahoo.com

For color version visit: http://www.cuet.ac.bd/IJIST/index.html

ISSN: 2411-9997

damage tolerance, good machinability, excellent thermal shock resistance, fully reversible plasticity, high resistance to oxidation and corrosion, good elastic rigidity, and ability to maintain the strengths to high temperature [2-9].

Among the known 85 synthesized MAX compounds [10], only Ti₂CdC phase contains Cd as A-group element. Moreover, this material is synthesized at the early period of discovery of the MAX phases by their discoverers' group [11]. Inspite of that Ti₂CdC is, up to date, a relatively little studied member of 211 phases. Liu et al. [12] carried out a theoretical study on structural and mechanical properties of Ti₂CdC along with other Ti_2AC (A = Sn, Ga, In, and Pb) phases. An ab initio study is accomplished by Bai et al. [13] to evaluate the chemical bonding by means of density of states (DOS) and the elastic properties of Ti₂CdC, providing the structural parameters. Yang et al. [14] investigated the dielectric function as optical property of Ti₂CdC including other MAX phases Ti_2AC (A = In, Sn, Al, and Pb). On the other hand, after a theoretical prediction by calculating the elastic coefficients of Ti2CdN as a stable nanolaminate [15], this phase has not drawn any attention

These motivate us to perform the present study on has been calculated by the formula: the structural, elastic, electronic, and optical properties of these Cd-containing MAX phases. We have also shed light on the effect of substitution of C by N in Ti_2CdC phase.

2. Theoretical Methods

The first-principles investigations have been conducted by using the Cambridge Serial Total Energy Package (CASTEP) code [16] in which the plane-wave pseudopotential total energy calculation approach based on the density functional theory (DFT) [17,18] is applied. The electronic exchangecorrelation energy has been treated according to Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) [19]. Interactions of electrons with ion cores were represented by the Vanderbilt-type ultrasoft pseudopotential [20]. To determine the number of plane-waves in expansion, a plane-wave cutoff energy of 500 eV was employed throughout the calculations. The crystal structures were fully optimized to calculate the ground state various properties by independently modifying the lattice parameters and internal atomic coordinates with no core correction or spin effect. The geometry optimizations were acquired through minimizing the total energy and internal forces by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization technique [21]. The convergence criteria were chosen as the difference in total energy being less than 5 x 10^{-6} eV/atom, the maximum ionic Hellmann -Feyman force being less than 0.01 eV/Å, maximum ionic displacement being less than 5 x 10⁻⁴ Å, and the maximum stress being less than 0.02 GPa. The tolerance in the self-consistent field calculation was set to 5 x 10⁻⁷ eV/atom. For the sampling of the Brillouin zone, the Monkhorst-Pack scheme [22] is used to produce a uniform grid of k-points along the three axes in reciprocal space of crystal, and $15 \times 15 \times$ 3 k-points for both Ti₂CdC and Ti₂CdN were taken to achieve the ground-states. In optical properties calculations, the Vanderbilt-type ultrasoft pseudopotential was replaced by the norm-conserving pseudopotential remaining the other set up unchanged.

The elastic constants have been determined by applying a set of finite homogeneous deformations and calculating the resulting stresses with respect to optimizing the internal degrees of freedom [23], as implemented in the CASTEP code.

The intraband contribution to the optical properties of metallic compounds like MAX phases affects mainly the low-energy part of the spectra. It can be

from either the experimentalists or the theorists. The imaginary part ε_2 (ω) of the dielectric function

$$\varepsilon_{2}(\omega) = \frac{2e^{2}\pi}{\Omega^{\varepsilon_{0}}} \sum_{k,\nu,c} \left| \left\langle \Psi_{k}^{c} \middle| \hat{u} \cdot \vec{r} \middle| \Psi_{k}^{\nu} \right\rangle \right|^{2} \delta(E_{k}^{c} - E_{k}^{\nu} - E)$$
(1)

where is the primitive cell volume, ω is the frequency of light, e is the electronic charge, u is the vector defining the polarization of the incident electric field and Ψ_k^c and Ψ_k^v are the conduction and valence band wave functions at k, respectively. The Kramers-Kronig relations provide the real part $\varepsilon_1(\omega)$ of the dielectric function and reflectivity.

3. Results and Discussion

3.1. Structural Properties:

The MAX compounds Ti2CdC and Ti2CdN considered in this study belong to the hexagonal crystallographic system with space group P6₃/mmc (No. 194). There are two formula units and eight atoms per unit cell (Fig. 1). Fully relaxed structures for both lavered nanolaminates are obtained by optimizing the geometry structure including lattice constants and internal atomic positions, starting from an eight atoms unit cell. The optimized Ti atom located on the 4f Wyckoff position, fractional coordinates (1/3, 2/3, 0.077) and (1/3, 2/3, 0.076) in Ti₂CdC and Ti₂CdN, respectively. The Cd atoms are positioned in the 2d Wyckoff site, fractional coordinates (1/3, 2/3, 3/4) in Ti₂CdC and Ti₂CdN. The C and N atoms are situated in the 2a Wyckoff position, fractional coordinates (0, 0, 0) and (0, 0, 0). The obtained lattice constants a and c, internal atomic coordinate z, equilibrium unit cell volume V, Bulk modulus, and pressure derivative of bulk and theoretical values; the deviations for the lattice Ti_2CdN for the shear planes {1 0 1 0} between the constants and volumes are 1.11% and 1.39%, directions <0 1 1 1> and <0 1 1 0>. The large substitution of C by N mostly affects the c values;

modulus B for Ti₂CdC and Ti₂CdN at 0K are given in this, the calculated shear anisotropy factor, defined Table 1. Our calculated structural parameters agree by A = $4C_{44}/(C_{11} + C_{33} - 2C_{13})$, also implies that quite well with both experimental (where applicable) Ti2CdC possesses large anisotropy compared to respectively. As noted from the calculated data, the anisotropy for Ti₂CdC indicates that the in-plane and out - of - plane inter - atomic interactions in Ti₂CdC

Table 1. Calculated lattice parameters a and c (in Å), hexagonal ratio c/a, internal parameter z, unit cell volume V (in Å³) and bulk modulus B (in GPa) and its pressure derivative B for Ti₂CdC and Ti₂CdN.

Compound	a	С	c/a	Z	V	В	Β'	Reference
Ti ₂ CdC	3.103	14.57	4.696	0.077	121.50	112	4.9	Present
	3.099	14.41	4.650	0.086	119.84	-	-	Expt. [11]
	3.091	14.528	4.700	-	120.21	-	-	Theo. [12]
	3.104	14.55	4.687	0.077	121.40	116	-	Theo. [13]
	3.106	14.54	4.681	-	121.47	116	-	Theo. [15]
Ti ₂ CdN	3.078	14.19	4.610	0.076	116.48	126	5.4	Present
	3.082	14.15	4.591	-	116.40	130	-	Theo. [15]

the *a* values almost remain unchanged, which is the opposite of the general trend as C is replaced by N results in a more affected a values in comparison with the c values [26]. To better understand this intriguing discrepancy more work, especially theoretical work, is required. The bulk modulus increases by 12.5% as the C is substituted with N. 3.2. Elastic Properties

Table 2 lists the calculated elastic constants C_{ij}, together with other theoretical results of Ti2CdC and Ti₂CdN. Our calculated results for both nanolaminates agree well with the values found in literatures [12,13,15]. The calculated elastic constants are positive and satisfy the well-established Born criteria [27], which suggests that the studied two 211 MAX phases are mechanically stable. It is observed that the elastic constants C_{11} and C_{33} increase when C is substituted with N. So, we may conclude that the Ti-N bonds are stronger than Ti-C bonds. The average difference between C_{11} and C_{33} for all studies of Ti₂CdC is 51.5, whereas for Ti₂CdN, this is 33. It suggests that the elastic anisotropy in Ti₂CdC is high in comparison with Ti₂CdN. Beside

crystal differ largely. Another anisotropy parameter defined by the ratio between the linear compressibility coefficients along the c- and a-axis for hexagonal crystal: $k_c/k_a = (C_{11} + C_{12} - 2C_{13})/(C_{33} - C_{13})$ C_{13}) has also been evaluated. The obtained results imply that the compressibility along the c-axis is larger than that along the a-axis for both the phases. But in comparison with the Ti₂CdN phase, Ti₂CdC is more compressible along the c-axis. As noted above, the elastic anisotropy decreases as C is replaced by N. In fact, the elastic anisotropy for Ti₂CdN is quite mild and as a result, this phase is almost cubic in its lack of elastic anisotropy [26].

Table 2 also tabulates the values of bulk moduli B, shear moduli G, Young moduli Y and Poisson's ratio v of two compounds. For comparison, other theoretical values available in the literatures [12,13,15] are also listed in the table. Not surprisingly, all elastic constants and moduli increase when C is replaced by N. The bulk materials can be classified into two groups according to the Pugh's criteria [28]: ductile and brittle materials. A material should be brittle if its G/B > 0.5, otherwise it should

Table 2. Calculated elastic constants Cn_{ii} (GPa), bulk moduli B (GPa), shear moduli G (GPa), Young's moduli Y (GPa), Poisson's ratio v, elastic anisotropic factor A and k_c/k_a of Ti₂CdC and Ti₂CdN.

Compound	C_{11}	C_{12}	C_{13}	C ₃₃	C_{44}	В	G	Y	G/B		Α	$k_{\rm c}/k_{\rm a}$	Ref.
Ti ₂ CdC	257	68	44	205	36	114	64	162	0.56	0.26	0.385	1.472	Present
	263	64	45	212	39	114	74	183	0.65	0.23	0.405	1.419	Theo.[12]
	258	68	46	205	33	116	70	174	0.60	0.25	0.356	1.465	Theo.[13]
	253	71	47	203	31	116	67	168	0.58	0.26	0.343	1.474	Theo.[15]
Ti ₂ CdN	266	76	56	235	74	127	87	212	0.68	0.22	0.761	1.285	Present
	270	83	58	235	68	130	84	208	0.65	0.23	0.699	1.339	Theo.[15]

and Ti₂CdN are brittle in nature, which is the general trend of MAX phases [30-32].

3.3. Electronic Properties

are illustrated in Fig. 2. The Fermi level of both are consistent with the reports published on MAX

be ductile. The Poisson's ratio for a ductile metallic which is high and inherently, explain the metallic material is typically 0.33 and for brittle material, it is behavior of the phase Ti₂CdC. Our result is small and less than 0.33 [29]. So, according to Pugh's consistent with the value of 5.595 states per unit cell criteria and the values of Poisson's ratio, both Ti₂CdC per eV calculated by Bai et al. [13]. The conduction properties of Ti₂CdC results in due to the Ti 3d contribution. There is no contribution to the DOS at the Fermi level from C and therefore C is not The investigated band structures of Ti2CdC and involved in the conduction properties. A poor Ti₂CdN at equilibrium lattice parameters along the contribution from Cd 5p states participate in high symmetry directions in the first Brillouin zone formation of DOS at the Fermi level. These results

Fig. 2. Electronic band structure of (a) Ti₂CdC and (b) Ti₂CdN with equilibrium optimized structure.

nanolaminates lies above the valence band maximum near the K point. The occupied valence bands of Ti₂CdC lie in the energy range from -6.9 eV to Fermi level E_F . On the other hand, in Ti₂CdN the valence bands extend widely from -7.2 eV to Fermi level. Moreover, for both the phases, a lot of valence bands go across the Fermi level and overlap with conduction bands. Consequently, no band gap is found at the Fermi level and Ti₂CdC as well as Ti₂CdN shows the metallic conductivity.

The total and partial density of states (DOS) of Ti₂CdC and Ti₂CdN are presented in Fig. 3. It is seen that the lowest-lying valence bands in Ti₂CdC, from -11.5 to -9.4 eV, are formed by the C 2s states with a small mixture of the Ti 3p and Ti 3d states. The highest valence bands occupied the energy range from -9.4 to -7.2 eV are derived almost entirely from Cd 4d states. The valence bands located between -7.2 and -5.4 eV below the Fermi level arise mainly from mixed Ti 3s, 3p and Cd 5s, 5p states. An intense peak in the total DOS in the range -5.4 to -2 eV are originated from the strong hybridization of Ti 3d and C 2p states indicating the covalent Ti-C bonds in Ti₂CdC. At the Fermi level, the DOS mainly arises from the Ti 3d states. The calculated DOSs at the Fermi level $N(E_F)$ is 5.63 states per unit cell per eV,

phases [31, 33]. The almost similar features are found in Ti₂CdN phase though the lowest-lying valence bands disappear in Ti₂CdC when C is substituted by N. However, the DOSs at the Fermi level decrease from 5.63 to 4.57 states per unit cell per eV as C is replaced with N, indicating that Ti₂CdC is more conducting than Ti₂CdN. This is consistent with the results observed in Ti₂AlX [34,35] and Ti₂InX [36], but not in agreement with the calculations conducted for Ti₂AlX by Du et al. [37] and for Ti₂InX by Benayad et al. [38], where X is C or N. By comparing Figs. 3(a) and 3(b), it is seen that the covalent Ti-C bond in Ti₂CdC has the energy range from -5.4 to -2 eV, whereas the covalent Ti-N bond in Ti₂CdN occupies the energy range from -7.2 to 4 eV. Obviously, the Ti-N bond is stronger than Ti-C bond, since the former appears at a lower energy. For this reason, all elastic moduli of Ti₂CdN are larger than that of Ti₂CdC. The Ti-Cd bonds in both Ti₂CdC and Ti₂CdN correspond to the peaks of states at around -0.34 and -0.76 eV, respectively, which essentially suggest that the Ti-Cd bonds are weaker than Ti-C and Ti-N bonds. The overall bonding character in two MAX phases may be described as a mixture of metallic, covalent and ionic.

Fig. 3. The calculated total and partial-density of states for (a) Ti₂CdC and (b) Ti₂CdN.

3.5. Optical Properties

The calculated optical properties such as dielectric function and reflectivity of two MAX compounds for incident photon energies up to 20 eV for two polarization vectors [100] and [001] are depicted in Fig. 4. Dielectric function is the most general property of a material, which modifies the incident

dielectric function ε_1 (ω) of the phase Ti₂CdC for the polarization along [100] direction exhibit two peaks at around 0.8 and 2.3 eV, whereas for [001] direction no peak is found.

In case of Ti₂CdN, a peck is observed at 0.88 eV for the direction [100] and at 1.1 eV for the direction [001]. It is seen that the peak intensity increase

Fig. 4. (a) real part of dielectric function, (b) imaginary part of dielectric function and (c) reflectivity of Ti₂CdC and Ti₂CdN.

illustrated in Figs. 4(a) and 4(b). The real part of the function goes through zero from below, which implies

electromagnetic wave of light. The real and expeditiously when C is replaced with N in Ti₂CdC. imaginary parts of the dielectric function are In the range of $\varepsilon_1 < 0$, the real part of the dielectric the metallic nature of the two studied phases. The imaginary part of the dielectric function approaches zero from above that also confirms the metallic characteristics of the two compounds. In fact, this is the general feature of the MAX phase compounds [25, 31, 32, 39]. In the range of high energies, the real part of the dielectric function tends to be unity and the imaginary part reaches nearly zero. It means that in this region where the materials become almost transparent with a small absorption.

The reflectivity spectra as a function of incident photon energy are plotted in Fig. 4(c) for two polarization directions. It is observed that the reflectivity spectra for two different polarization directions do not exhibit great changes in the entire 4. energy range in case of each phase. But the scenario is different for two different phases. At around 4.5 eV a gradual increase starts for Ti₂CdC but a rapid decrease occurs in reflectivity spectra of Ti₂CdN. An intense peak observed at around 8.5 eV in the reflectivity spectra of Ti₂CdC is shifted at around 9.8 eV when C is replaced with N. In the moderateinfrared region, the reflectivity spectra of both MAX materials increase drastically and rise to reach the maximum value of 0.98. It is seen that the reflectivity spectra for two polarization directions for two phases exhibit no significant change in the energy range 1.8-5.1 eV and the amount of reflectivity is always above 44%. Due to almost constant reflectance in the visible light region (1.8-3.1 eV), the two nanolaminates Ti₂CdC and Ti₂CdN should appear as metallic gray. Moreover, for the same reason, the two MAX compounds show the nonselective characteristic that makes them capable of reducing solar heating. So, we may conclude as Li et al. [25] that the MAX phases have the potential to be used as a coating on spacecraft to avoid solar heating.

4. Conclusion

We have performed the first-principles calculations to investigate the structural, elastic, electronic and optical properties of the Cd-containing MAX phase Ti_2CdC and Ti_2CdN . Our results show that the substitution of C by N in Ti_2CdC affects the all properties such as structural, elastic, electronic, etc. The replacement of C with N reduces all the elastic constants and moduli of Ti_2CdC . The phase Ti_2CdC is more compressible along the c-axis compared to Ti_2CdN . The elastic anisotropy of Ti_2CdC is higher than that of Ti_2CdN . The studied two MAX phases are brittle in nature. Via the calculation of electronic band structures and density of states, the chemical bonding in two nanolaminates are seen to be a combination of covalent, ionic and metallic nature. Ti_2CdC is more conducting than Ti_2CdN . The MAX phases Ti_2CdC and Ti_2CdN are potential candidate materials for coating to reduce solar heating.

References

- 1. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).
- Z. M. Sun, H. Hashimoto, Z. F. Zhang, S. L. Yang and S. Tada, Mater. Trans. 47, 170 (2006).
- 3. M. W. Barsoum and T. El-Raghy, J. Am. Ceram. Soc. 79, 1953 (1996).
- H. Yoo, M.W. Barsoum and T. El-Raghy, Nature (London). 407, 581 (2000).
- 5. M. W. Barsoum, L. Farber and T. El-Raghy, Metall. Mater. Trans. A 30, 1727 (1999).
- T. El-Raghy, M.W. Barsoum, A. Zavaliangos and S.R. Kalidindi, J. Am. Ceram. Soc. 82, 2855 (1999).
- M. Sundberg, G. Malmqvist, A. Magnusson and T. El-Raghy, Ceram. Inter. 30, 1899 (2004).
- V. D. Jovic, M. W. Barsoum, B. M. Jovic, S. Gupta and T. El-Raghy, Corr. Sci. 48, 4274 (2006).
- P. Finkel, M. W. Barsoum and T. El-Raghy, J. Appl. Phys. 87, 1701 (2000).
- A. M. Farle, S. Van der Zwaag and W.G. Sloof, "A conceptual study into the potential of maxphase ceramics for self-healing of crack damage", Proceedings of the 4th International Conference on Self-Healing Materials, Ghent, Belgium, pp. 16-20 June (2013).
- 11. W. Jeitschko, H. Nowotny and F. Benesovsky, Monatsh. Chem. 95, 178 (1964).
- B. Liu, J. Y. Wang, J. Zhang, J. M. Wang, F. Z. Li and Y. C. Zhou, Appl, Phys. Lett. 94, 181906 (2009).
- 13. Y. Bai, X. He, M. Li, Y. Sun, C. Zhu and Y. Li, Solid State Sci. 12, 144 (2010).
- L. Yang, K. Huang, T. Pu, B. Wang, and M. Luo, "Study the dielectric and optic properties of Ti2XC (X=In, Sn,Al, Cd and Pb) by density function theory", Proceedings of the International Conference on Microwave and Millimeter Wave Technology, pp. 8-11 May (2010).

- M. F. Cover, O. Warschkow, M. M. M. Bilek and D. R. McKenzie, J. Phys.: Condens. Matter 21, 305403 (2009).
- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Zeitschrift f
 ür Kristallographie. 220, 567 (2005).
- P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- 19. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 20. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
- T. H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).
- 22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- 23. F. D. Murnaghan, Finite Deformation of an Elastic Solid (Wiley, New York, 1951).
- R. Saniz, L. H. Ye, T. Shishidou and A. J. Freeman, Physical Review B 74, 014209 (2006).
- 25. S. Li, R. Ahuja, M. W. Barsoum, P. Jena and B. Johansson, Appl. Phys. Lett. 92, 221907 (2008).
- 26. Y. L. Du, Z. M. Sun, H. Hashimoto and M. W. Barsoum, Phys. Lett. A 374, 78 (2009).
- 27. M. Born, Math. Proc. Camb. Philos. Soc. 36, 160 (1940).
- 28. S. F. Pugh, Philos. Mag. 45, 823 (1954).
- 29. J. Haines, J. M. Léger and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).
- W. Y. Ching, Y. Mo, S. Aryal and P. Rulis, J. Am. Ceram. Soc. 96, 2292 (2013).
- M. A. Hadi, M. Roknuzzaman, F. Parvin, S. H. Naqib, A. K. M. A. Islam and M. Aftabuzzaman, J. Sci. Res. 6, 11 (2014).
- M. T. Nasir, M. A. Hadi, S. H. Naqib, F. Parvin, A. K. M. A. Islam, M. Roknuzzaman and M. S. Ali, Int. J. Mod. Phys. B 29, 1550022 (2015).
- 33. G. Hug and E. Fries, Phys. Rev. B 65, 113104 (2002).
- H. Faraoun, R. Terki, C. Esling and H. Aourag, Mater. Sci. Eng. B 110, 280 (2004).

- 35. Y. Zhou and Z. Sun, Phys. Rev. 61, 12570 (2000).
- M. Roknuzzaman and A. K. M. A. Islam, ISRN Condensed Matter Physics 2013, article ID 646042 (2013).
- Y. L. Du, Z. M. Sun, H. Hashimoto and M. W. Barsoum, Phys. Lett. A 374, 78 (2009).
- N. Benayad, D. Rached, R. Khenata, F. Litimein, A. H. Reshak, M. Rabah and H. Baltache, Mod. Phys. Lett. B 25, 747 (2011).
- M. A. Hadi, M. S. Ali, S. H. Naqib and A. K. M. A. Islam, Int. J. Comp. Mater. Sci. Engin. 2, 1350007 (2013).